
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 2, FEBRUARY 1997 281

Short Papers

A Simple Evaluation of Losses in Thin Microstrips

Giovanni B. Stracca

Abstract—A simple modification of Wheeler’s incremental inductance
rule is presented which allows the extention of the use of this rule for the
evaluation in quasi-TEM operation of losses in thin microstrips (i.e., when
the Wheeler’s rule is considered no longer applicable). A good agreement
of the proposed formula with available numerical results is obtained when
thickness is comparable with skin depth. A comparison is also made
with two approximate formulas proposed by some authors. The proposed
modification to Wheeler’s rule should be useful for computer-aided design
(CAD) of monolithic microwave integrated circuits (MMIC’s).

I. INTRODUCTION

In this paper it is shown that it is possible to introduce a simple
modification in the Wheeler’s rule to evaluate losses in thin mi-
crostrips (at least in the quasi-TEM approximation and in absence
of anomalous skin effect) when the metallization thicknessest range
in the skin depth’s� order of magnitude as in monolithic microwave
integrated circuits (MMIC’s) (i.e., whent=� < 5). A good agreement
is found with the calculations performed with sophisticated methods
as shown in [1]–[9], which require long numerical computations
and are not appropriate for CAD implementations. The procedure is
presented in Sections II and III for microstrips, but it may be extended
to other thin-strip structures (e.g., strip lines, coplanar strips, etc.). In
Section IV the results obtained with this approximate method are
compared with both the few available numerical results and with
those obtained with two approximate empirical formulas given in [3]
and [5], [6].

II. DESCRIPTION OF THEWHEELER’S RULE MODIFICATION

Let w, t, tg, and h be the microstrip dimensions [defined in
Fig. 1(a)], "r the dielectric relative permittivity of substrate and
"r;e� its effective value,� the metal conductivity,� the skin depth,
Rs = 1=��; Zs = Rs(1 + j) the metal wave impedance and

c = (1 + j)=� the metal propagation constant,� = �0="0 the
vacuum wave impedance,Zc the lossless microstrip characteristic
impedance,Fz = Zc

p
"r;e�=� the form factor ofZc, and j�e� =

j!
p
�0"o

p
"r;e� the microstrip lossless propagation constant. The

microstrip attenuation� due to conductor losses may be computed
as the real part of the microstrip propagation constant
, which can be
expressed as a function ofj�e� , Zc, andZ the conductor impedance
per unit length, due to the field penetration in metal


 = �+ j� = j�e� 1� j
Z

�e�Zc

: (1)

In case the Wheeler’s rule can be applied (thick microstrips and
quasi-TEM behavior), the impedanceZ, as known [10], is given by

Z = Zs

@Fz

@n
= Zw + Zt + Zg (2)
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whereZw is the contribution toZ of the strip large sides,Zt that of
the strip lateral sides, andZg that of the ground plane

Zw =
@Fz

@h
� 2

@Fz

@t
Zs Zt = �2@Fz

@w
Zs

Zg =
@Fz

@h
Zs: (3)

For a thin microstrip (always in quasi-TEM behavior), the proposed
procedure replaces the value ofZ in (1) with a new valueZe�

obtained by increasingZw, Zt, andZg of suitable factorsFw, Ft,
and Fg

Ze� = ZwFw + ZtFt + ZgFg = Zstrip + ZgFg (4)

where

Zstrip = ZwFw + ZtFt: (5)

The factorsFw, Ft, andFg to be introduced in (4) are given by (see
Section III)

Fw = coth(
ct) +
2m

1 +m2

1

sinh(
ct)

Fg = coth(
ctg); Ft = coth 
c
w

2
(6)

wherem is

m
2
=

�@Fz

@t
@Fz

@h
� @Fz

@t

: (7)

In case of thick ground metallization(tg � �) and large strips
(w � �), Fg, andFt simplify in Fg = 1 andFt = 1.

The behavior ofZe� , as given by (4), is in good agreement in the
microwave frequency range (i.e., typically whent=� > 1), with the
available numerical results, as shown in Section IV. Comparisons
are also made with the two quoted approximate formulas, which
were obtained by forcing in an empirical way the value ofZstrip

to Rdc = 1=(�wt) when t=� < 1.
This first approximate formula [6, eq. (19)] refers only to the case

of an isolated strip conductor and is valid only in the restricted range
of values presented in [6] (i.e.,w=t< 6 and

p
2��fwt< 8).

The second approximate formula given in [3, eq. (3)] and [5, eq.
(7)] (called in [5] the phenomenological loss equivalence method)
consists simply in replacing in (1)Z [as given by (2)], with a new
valueZ 0, chosen to forceZ 0 from Z to Rdc whenZ <Rdc. This last
formula, however, does not take into account the loss contribution of
the ground plane, also when it is not negligible(w>h; tg �= t).

The behavior ofZe� of (4) at very low frequencies, below the
microwave range(t=� � 1), presents a strip contributionZstrip to
Ze� [in (5)], which is slightly smaller thanRdc whenw=t< 6 and is
slightly greater thanRdc whenw=t> 9. Due to the small difference
betweenZstrip and Rdc it is possible to improve the behavior of
Ze� up to very low frequencies by multiplyingZstrip in (4) by
a suitable factorT , empirically chosen (as done in the previously
quoted formulas given in [3] and [5]–[6]) to force the value ofZstrip
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(a)

(b)

Fig. 1. (a) Microstrip configuration. (b) Equivalent circuit of the strip
between sides 1 and 2 (a very large internal impedance has been assumed
for the two current generatorsI1 and I2, being the metal wave impedance
Zs very small with respect to the vacuum wave impedance�).

to Rdc when t=� tends to 0

Ze� = ZstripT + ZgFg : (4’)

The factorT could be chosen modifying formula (7) of [5] in a
suitable way to better match the available numerical results at low
frequencies

T = [coth(r)
3
]
1=3

coth y
t

�

2

tanh
t

�

2

(8)

where (if w=h< 10)

r = RefZstrip=Rdcg; y = 1 + 0:013 ln
2 w

t
1� 0:1

w

h
:

III. D ERIVATION OF Fw; Ft, AND Fg

The approximation involved in deriving the factorFw (in addition
to the quasi-TEM approximation) mainly consists in evaluating the
magnetic energy and the power lost in the strip conductor, associated
to the magnetic fields [Fig. 1(a)] at the strip lower-side(H1) and at
the strip upper-side(H2) as if the field were constant on the two strip
sides and equal to the average spatial rms valuesHe1 andHe2

H
2
e1 =

1

w

w

0

jH1j
2
ds; H

2
e2 =

1

w

w

0

jH2j
2
ds:

The parameterm2 is defined asm2
= jHe2j

2=jHe1j
2. The value

m2 can be evaluated as the ratio between the conductor losses in the
strip sides 2 and 1, respectively, which can be obtained, as in (7), by
means of the Wheeler’s rule.

In case of constant magnetic fields(H1 = He1 andH2 = He2) on
the strip sides 1 and 2, the input wave impedancesZin(1) andZin(2)

on the metal surfaces 1 and 2, respectively, can be obtained from the
two port equivalent circuit of Fig. 1(b) of a transmission line model
of the strip between sides 1 and 2. Therefore, they have the following
values (instead ofZs, which is adequate fort � �)

Zin(1) =Z11 +mZ12 = ZsF1

Zin(2) =Z11 + Z12=m = ZsF2

beingZ11 andZ12 the impedance matrix elements of the equivalent
circuit of Fig. 1(b)

Z11 = Zs coth(
ct) Z12 = Zs= sinh(
ct): (9)

Fig. 2. AC resistanceRe� = RefZe�g of a metallic strip of rectangular
cross section, normalized to the dc strip resistanceRdc versus t=� as
obtained from [2], [4], and [6]. The numerical results are compared with those
obtained from (4’) by assumingh=w very large and with those obtained with
approximate formulas [6, eq. (19)] and [5, eq. (7)].

Fig. 3. Real partRe� of Ze� in a microstrip (normalized to the dc strip
resistanceRdc) versust=�, for w=t = 5; tg � t and forw=h = 10; 5; 0:1.
The value given by (4’) is compared with the numerical results computed in
[7] and with the values obtained with the approximate formula [5, eq. (7)].

The sum of the flux of Poynting’s vector on the strip side 1 and
of that on the strip side 2 can be written as

1

2
(Zin(1)jHe1j

2
+ Zin(2)jHe2j

2
)w

=
1

2
ZsjHe1j

2
w(1 +m

2
)
F1 +m2F2

1 +m2
= PFw: (10)

In (10) P = 1
2
ZsjHe1j

2w(1 + m2
) represents the flux per unit

length of the Poynting’s vector, evaluated in case of� � t by means
of Wheeler’s rule; the factorFw

Fw =
F1 +m2F2

1 +m2
(11)

takes into account the effect of the thin thickness and can be written
as in (6). The other two factorsFg andFt are derived in a similar
way, beingm = 0 for Fg andm = 1 for Ft.

IV. COMPARISON WITH NUMERICAL RESULTS

Figs. 2–5 compare the results obtained with the procedure here de-
scribed with those obtained with the approximate empirical formulas
[6, eq. (19)] and [5, eq. (7)] and available numerical results. The
results with (4) and (4’) have been obtained by using [11, eqs. (3.44)
and (3.52)] forZc and [12, eq. (3.56)] for"r;e� .

Figs. 2 and 3 present the behavior ofZe� , by varying the frequency
(i.e., �), for given valuesw=h andw=t; Figs. 4 and 5 present the
behavior of a fixed frequency by varyingt for fixed values ofw and
h (i.e., w=h = 2 in Fig. 4 andw=h = 0:15 in Fig. 5).
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Fig. 4. Microstrip conductor loss in dB/cm at 8 GHz versust=� (metal
thickness/skin depth) forw=h = 2; h = 508 �m; "r = 11; � = 5:7 � 10

7

S/m. The results obtained from (1) withZe� from (4) and (4’) are compared
with those presented in [1] and with those obtained with the approximate
formula [5, eq. (7)] and with Wheeler’s rule.

Fig. 5. Microstrip conductor loss in dB/cm at 2 GHz and 10
GHz versus t (metal thickness in micron) forw = 30 �m;
h = 200 �m; "r = 12:9; � = 3:333 � 10

7 S/m. The results obtained from
(1) with Ze� from (4) are compared with those presented in [8] and [9]
and with those obtained with the approximate formula [5, eq. (7) ] and
with Wheeler’s rule. The skin depth� results� = 0:872 �m at 10 GHz
and � = 1:95 �m at 2 GHz.

Fig. 2 shows the behavior of the real partRe� of Ze� of an isolated
metallic rectangular strip. The value ofRe� , evaluated with (4’),
normalized toRdc, vs t=�, is compared with the available numerical
results, computed in [2] (as presented in [4, Th. I]) and in [6], as well
as with the behavior of the two approximate formulas [6, eq. (19)]
and [5, eq. (7)]. Formula (19) of [6] is presented only in its range
of validity (w=t � 6).

The case of an isolated metallic rectangular strip is, however,
not very significant because the accuracy of formulas used for the
evaluation ofZc can be poor whenw=h!0. As shown in Fig. 3,
the agreement of (4’) with numerical results is much better for
a microstrip while the underestimate of the values given by the
approximate formula [5, eq. (7)] with respect to numerical methods
is still more remarkable. The divergence increases when the losses in
the ground plane become more important, i.e., by increasingw=h.

Other results for a microstrip are shown in the graphs of Figs. 4
and 5 in a large range ofw=t values. In Fig. 4 the attenuation values
obtained from (1) withZe� given both by (4’) and by (4) [i.e., without
the correcting factorT of (4’)] by varying the thicknesst with fixed

values ofw andh are compared with the values obtained from the
approximate formula [5, eq. (7)] and with those obtained by the
Wheeler’s rule, as well as with the numerical results evaluated in
[1] at 8 GHz forw=h = 2 ("r = 11, w = 1016 �m, h = 508 �m,
s = 5:7 � 107 S/m). A similar comparison is presented in Fig. 5 with
the numerical results of [8] and [9] at 2 GHz and 10 GHz for a small
width/height ratio, i.e.,w=h = 0:15 (w = 30 �m, h = 200 �m,
"r = 12:9, � = 3:333 � 107 S/m). In this case, curves with (4’) are
practically coincident with (4).

It can be observed that the differences between the approximate
approach presented here and the numerical methods [1], [2], [7]–[9]
are of the same order of magnitude of the differences between these
sophisticated methods. The results are in particular very close with
the most recent results [7]–[9].
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